Antimicrobial resistance: epidemiological profile of the city of Porto Alegre in 2021-2022.

Authors

DOI:

https://doi.org/10.17058/reci.v15i4.20267

Keywords:

Public Health Surveillance, Drug Resistance, Carbapenems, Drug Resistance Microbial

Abstract

Background and Objectives: Monitoring multidrug-resistant microorganisms is crucial for containing their spread in healthcare settings. The aim of this study was to describe the main epidemiological characteristics of multidrug-resistant microorganisms identified and reported in Porto Alegre in 2021 and 2022. Methods: This quantitative, descriptive epidemiological study is based on an analysis of secondary data from the Porto Alegre Municipal Health Department. Results: During the analyzed period, 15,016 multidrug-resistant microorganisms were identified. Enterobacterales were the most frequently reported microorganisms. An increase in notifications was observed in 2021 and 2022, which was associated with the improvement and strengthening of the city's surveillance process. Conclusion: The significant increase in notifications may be related to improvements in epidemiological surveillance, reflecting enhanced monitoring and detection of multidrug-resistant microorganisms in Porto Alegre.

Downloads

Download data is not yet available.

Author Biographies

  • Danilo Lucas Nunes Ribeiro, Escola de Saúde Pública do Rio Grande do Sul, Programa de residência integrada em Vigilância em Saúde, Porto Alegre, Rio Grande do Sul, Brasil

    .

  • Silvia Adriana Mayer Lentz, Secretaria Municipal de Saúde, Diretoria de Vigilância em Saúde, Porto Alegre, Rio Grande do Sul, Brasil

    .

  • Raquel Cristine Barcella, Secretaria Municipal de Saúde, Diretoria de Vigilância em Saúde, Porto Alegre, Rio Grande do Sul, Brasil

    .

References

1.Silva JO, Paixão JA. Resistência bacteriana e a atuação do farmacêutico na promoção do uso racional de antibacterianos em âmbito hospitalar. Artigos.Com. 2021;29(8):1-7. https://acervomais.com.br/index.php/artigos/article/view/7563.

2.Fio FS, Mattos Filho TR, Groppo FC. Resistência bacteriana. Bras Med. 2000;57(10):1129-40. https://www.researchgate.net/publication/257645108_Resistencia_Bacteriana.

3.Nathwani D, Della V, Stephens J, et al. Value of hospital antimicrobial stewardship programs [ASPs]: a systematic review. Antimicrob Resist Infect Control. 2019;8(1):333-45. https://doi.org/10.1186/s13756-019-0471-0.

4.Bokhary H, Pangesti KNA, Rashid H, et al. Travel-Related Antimicrobial Resistance: a systematic review. Trop Med Infect Dis. 2021;6(1):11. Disponível em: https://doi.org/10.3390/tropicalmed6010011.

5.Loureiro RJ, Roque F, Rodrigues AT, et al. O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Rev Port Saúde Pública. 2016;34(1):77-84. http://dx.doi.org/10.1016/j.rpsp.2015.11.003.

6.Kosiyaporn H, Chancatik S, Issaramalai T, et al. Surveys of knowledge and awareness of antibiotic use and antimicrobial resistance in general population: a systematic review. PLoS One. 2020;15(1):73-83. http://dx.doi.org 10.1371/journal.pone.0227973

7.Murray CJL, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55. https://linkinghub.elsevier.com/retrieve/pii/S0140673621027240.

8.Porto Alegre, Secretaria Municipal de Saúde. Boletim CMCIH: coordenação municipal de controle de infecção hospitalar. Coordenação Municipal de Controle de Infecção Hospitalar. Porto Alegre: Secretaria Municipal de Saúde; 2019. http://lproweb.procempa.com.br/pmpa/prefpoa/cgvs/usu_doc/cmcih_7.pdf.

9.Centers for Disease Control and Prevention (CDC). Vancomycin-resistant Enterococci (VRE) Basics. 2024. https://www.cdc.gov/vre/about/index.html.

10.Massignam ET. Infecções relacionadas à assistência à saúde e microrganismos multirresistentes notificados por hospitais de Porto Alegre/RS: uma análise de perfil e comparação histórica [monografia]. Porto Alegre (RS): Escola de Saúde Pública do Rio Grande do Sul; 2023.

11.Gebremeskel L, Teklu T, Kasahun GG, et al. Antimicrobial resistance pattern of Klebsiella isolated from various clinical samples in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis. 2023;23(1):40-52. https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-023-08633-x#citeas.

12. Han R, Shi Q, Wu S, et al. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China. Front Cell Infect Microbiol. 2020;10:314-22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347961/pdf/fcimb-10-00314.pdf.

13. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere. 2019 Jan;215:846-857. doi: 10.1016/j.chemosphere.2018.10.114.

14.Lupo A, Haenni M, Madec JY. Antimicrobial Resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol Spectr. 2018;6(3):1-16. https://journals.asm.org/doi/epdf/10.1128/microbiolspec.arba-0007-2017.

15.Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci. 2021;3128(22):315-40.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003266/pdf/ijms-22-03128.pdf.

16. Ciapponi A, Bardach A, Sandoval MM, et al. Systematic Review and Meta-analysis of Deaths Attributable to Antimicrobial Resistance, Latin America. Emerg Infect Dis. 2023 Nov;29(11):51-83. doi: 10.3201/eid2911.230753.

17. Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol. 2022 Mar 15;12:327-45. doi: 10.3389/fcimb.2022.823684.

18. Młynarczyk-Bonikowska B, Majewska A, Malejczyk M, Młynarczyk G, Majewski S. Multiresistant Neisseria gonorrhoeae: a new threat in second decade of the XXI century. Med Microbiol Immunol. 2019 Dec 4;209(2):95-108. doi: 10.1007/s00430-019-00651-4.

19. Gao H, Liu Y, Wang R, Wang Q, Jin L, Wang H. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine. 2020 Jan;51:102-30. doi: 10.1016/j.ebiom.2019.102599.

20. Camargo CH, Yamada AY, Souza AR, et al. Current status of NDM-producing Enterobacterales in Brazil: a narrative review. Braz J Microbiol. 2022 Jun 11;53(3):1339-44. doi: 10.1007/s42770-022-00779-1.

21. Simjee S, Mcderrmott P, Trott DJ, Chuanchuen R. Present and Future Surveillance of Antimicrobial Resistance in Animals: principles and practices. Microbiol Spectr. 2018 Jul 27;6(4):117-30. doi: 10.1128/microbiolspec.arba-0028-2017.

22. Wyres KL, Hawkey J, Mirceta M, et al. Genomic surveillance of antimicrobial resistant bacterial colonisation and infection in intensive care patients. BMC Infect Dis. 2021 Jul 14;21(1):210-21. doi: 10.1186/s12879-021-06386-z.

23. Brasil. Agência Nacional de Vigilância Sanitária. Prevenção de infecções por microrganismos multirresistentes em serviços de saúde. 1ª ed. Brasília: Anvisa; 2021. 104p. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2021/anvisa-publica-manual-sobre-microrganismos-multirresistentes.

Published

2026-01-29

Issue

Section

ORIGINAL ARTICLE

How to Cite

Lucas Nunes Ribeiro, D. ., Adriana Mayer Lentz, S. ., & Cristine Barcella, R. . (2026). Antimicrobial resistance: epidemiological profile of the city of Porto Alegre in 2021-2022. Revista De Epidemiologia E Controle De Infecção, 15(4). https://doi.org/10.17058/reci.v15i4.20267