Development and evaluation of equipment for disinfection by ultraviolet radiation in healthcare environments

Authors

  • Aline Teichmann Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil
  • Demis Pessatto Faqui Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil
  • Eduardo Dullius Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil
  • Gilson Augusto Helfer Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil.
  • Nayanna Dias Bierhals Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil
  • Maitê Souza Magdalena Hospital Santa Cruz, Santa Cruz do Sul, Rio Grande do Sul, Brasil. Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil
  • Andréia Rosane de Moura Valim Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil.
  • Jane Dagmar Pollo Renner Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil.
  • Janine Koepp Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil
  • Mari Ângela Gaedke Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil
  • Adilson Ben da Costa Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil

DOI:

https://doi.org/10.17058/reci.v15i3.20108

Keywords:

Decontamination. Disinfection. Ultraviolet Rays. UV Light. NonIonizing Radiation.

Abstract

Background and Objectives: In hospitals, where there is a high circulation of microorganisms, complementary technologies are essential to improve disinfection. This study aimed to develop a technology adapted to our reality, produced and tested by our research group, safe, easy to operate and with low construction cost so that it can be used in health environments such as hospitals with limited resources. Methods: After research, 55W lamps, T8 - G13 - 909 mm with emission of ultraviolet radiation at 254 nm were chosen as the UVC source. The “Torre UVC” application was created using the Android Studio IDE. Power measurements taken with a radiometer were used to assess the efficiency of the UVC tower and determine the appropriate doses. The efficiency of the tower against some clinically important microorganisms was evaluated. Results: The UVC tower was constructed with an aluminum frame and 8 lamps, allowing remote operation. The app was designed for easy and intuitive use. The efficiency tests conducted with the radiometer demonstrate an exponential decrease in radiation dosage as objects or surfaces move away from the tower. The tower effectively inhibited microbial growth (bacteria and fungi) even with low doses of UVC radiation (12 mJ/cm²) and reduced the viral load of the SARS-CoV-2 positive sample. Conclusion: It was possible to develop a safe and easy to operate technology with low construction costs that can be used in healthcare environments with satisfactory results in the disinfection of microorganisms.

Downloads

Download data is not yet available.

References

1. Jerry J, O'Regan E, O'Sullivan L, et al. Do established infection prevention and control measures prevent spread of SARS-CoV-2 to the hospital environment beyond the patient room? J Hosp Infect. 2020;105(4):589-592. doi:10.1016/j.jhin.2020.06.026.

2. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. doi:10.1001/jama.2020.1585.

3. Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020;133(9):1039-1043. doi:10.1097/CM9.0000000000000774.

4. Odoyo E, Matano D, Tiria F, et al. Environmental contamination across multiple hospital departments with multidrug-resistant bacteria pose an elevated risk of healthcare-associated infections in Kenyan hospitals. Antimicrob Resist Infect Control. 2023 Mar 29;12(1):22. doi:10.1186/s13756-023-01227-x.

5. Moccia G, Motta O, Pironti C, et al. An alternative approach for the decontamination of hospital settings. J Infect Public Health. 2020;13(12):2038-2044. doi:10.1016/j.jiph.2020.09.020.

6. Bhardwaj SK, Singh H, Deep A, et al. UVC-based photoinactivation as an efficient tool to control the transmission of coronaviruses. Sci Total Environ. 2021;792:148548. doi:10.1016/j.scitotenv.2021.148548.

7. Enaki NA, Paslari T, Bazgan S, et al. UVC radiation intensity dependence of pathogen decontamination rate: semiclassical theory and experiment. Eur Phys J Plus. 2022;127(9):1047. doi:10.1140/epjp/s13360-022-03252-y.

8. Grist SM, Geldert A, Gopal A, et al. Current understanding of ultraviolet-C decontamination of N95 filtering facepiece respirators. Appl Biosaf. 2021;26(2):90-102. doi:10.1089/apb.20.0051.

9. Riu F, Ruda A, Ibba R, et al. Antibiotics and carbohydrate-containing drugs targeting bacterial cell envelopes: an overview. Pharmaceuticals (Basel). 2022;15(8):942. doi:10.3390/ph15080942.

10. Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, et al. Candida glabrata antifungal resistance and virulence factors, a perfect pathogenic combination. Pharmaceutics. 2021 Sep 22;13(10):1529. doi:10.3390/pharmaceutics13101529.

11. Guridi A, Sevillano E, de la Fuente I, et al. Disinfectant activity of a portable ultraviolet C equipment. Int J Environ Res Public Health. 2019;16(23):4747. doi:10.3390/ijerph16234747.

12. Santos T, de Castro LF. Evaluation of a portable Ultraviolet C (UV-C) device for hospital surface decontamination. Photodiagnosis Photodyn Ther. 2020;33:102161. doi: 10.1016/j.pdpdt.2020.102161.

13. Fox-Lewis A, Fox-Lewis S, Beaumont J, et al. SARS-CoV-2 viral load dynamics and real-time RT-PCR cycle threshold interpretation in symptomatic non-hospitalised individuals in New Zealand: a multicentre cross sectional observational study. Pathology. 2021;53(4):530-535. doi:10.1016/j.pathol.2021.01.007.

14. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177-1179. doi:10.1056/NEJMc2001737.

15. Veronesi L, Colucci ME, Pasquarella C, et al. Virological surveillance of SARS-CoV-2 in an Italian northern area: comparison of real time RT-PCR cycle threshold (Ct) values in three epidemic periods. Acta Biomed. 2020;91(9-S):19-21. doi:10.23750/abm.v91i9-S.10138.

16. Aranha C, Patel V, Bhor V, et al. Cycle threshold values in RT-PCR to determine dynamics of SARS-CoV-2 viral load: an approach to reduce the isolation period for COVID-19 patients. J Med Virol. 2021;93(12):6794-6797. doi:10.1002/jmv.27206.

17. Buonanno M, Welch D, Shuryak I, et al. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci Rep. 2020;10(1):10285. doi:10.1038/s41598-020-67211-2.

18. Gidari A, Sabbatini S, Bastianelli S, et al. SARS-CoV-2 survival on surfaces and the effect of UV-C light. Viruses. 2021;13(3):408. doi:10.3390/v13030408.

19. Dexter F, Parra MC, Brown JR, et al. Perioperative Covid-19 defense: an evidence-based approach for optimization of infection control and operating room management. Anesth Analg. 2020;131(1):37-42. doi:10.1213/ANE.0000000000004829.

20. Zaman A, Majib MS, Tanjim SA, et al. UVC-PURGE: A novel cost-effective disinfection robot for combating Covid-19 pandemic. IEEE Access. 2022;S/N(1):37613-37634. doi: 10.1109/ACCESS.2022.3163243.

Published

2025-08-18

Issue

Section

ORIGINAL ARTICLE

How to Cite

Development and evaluation of equipment for disinfection by ultraviolet radiation in healthcare environments. (2025). Revista De Epidemiologia E Controle De Infecção, 15(3). https://doi.org/10.17058/reci.v15i3.20108