A viabilidade da produção de aves e suínos não deve (e não pode) depender de antibióticos.
DOI:
https://doi.org/10.17058/redes.v30i1.20037Palavras-chave:
Bem-Estar Animal, Biosseguridade, Indústria Agropecuária, Resistência Microbiana a Medicamentos, Saúde ÚnicaResumo
O objetivo deste ensaio é analisar mecanismos para a adoção do uso racional de antibióticos aplicados ao modelo de produção industrial de criação de aves e suínos. Por meio de uma revisão da literatura, os resultados encontrados apontam que o sistema atual pode alcançar este objetivo, adotando práticas de bem-estar animal e biosseguridade, bem como pelo uso de aditivos alternativos, o que não implica mudanças drásticas no sistema de produção de aves e suínos e condiz com a oferta de proteínas animais de acordo com as necessidades metabólicas dos seres humanos. O uso excessivo de antibióticos leva à resistência bacteriana, enquanto a carne e os dejetos podem ser vetores de transmissão de bactérias resistentes. Dado o imenso poder da indústria que domina essas atividades, recomendamos a adoção de um sistema de registro e controle estatal do uso de antibióticos nas criações concentracionárias de suínos e aves, atualmente desconhecido no país. No mesmo sentido, propomos que pesquisas para identificação de aditivos biológicos de plantas nativas sejam incentivadas, a fim de garantir maior segurança e soberania alimentar e nutricional na oferta de alimentos derivados dessa atividade, especialmente para consumidores brasileiros.
Downloads
Referências
ABRAMOVAY, R.; LOUZADA, M. L.; NILSON, E.; MARROCOS, F.; NUNES-GALBES, N. O mito do déficit proteico. Revista de Saúde Pública (Online), 2025.
ABD EL-HACK, M. E. et al. Probiotics in poultry feed: A comprehensive review. Journal of Animal Physiology and Animal Nutrition, v. 104, n. 6, p. 1835-1850, 2020.
ALBERNAZ-GONÇALVES, R.; ANTILLÓN, G. O.; HÖTZEL, M. J. Linking Animal Welfare and Antibiotic Use in Pig Farming - A Review. Animals, v. 12, n. 2, p. 216, 2022. doi: 10.3390/ani12020216.
ALBERNAZ-GONÇALVES, R. et al. Animal welfare for a healthy and sustainable agrifood system. Policy Brief. Reunião do G20 Brasil 2024. Disponível em: https://www.t20brasil.org/media/documentos/arquivos/TF01_ST02_ANIMAL_WELFARE_FOR_A66d75e57f3195.pdf.
ALLANIMA. Relatório Observatório Suíno. 2023. Disponível em: https://observatoriosuino.com.br/
ALVES, L. F. A.; JOHANN, L.; OLIVEIRA, D. G. P. Challenges in the Biological Control of Pests in Poultry Production: a Critical Review of Advances in Brazil. Neotropical Entomology, v. 52, p. 292-301, 2023. doi: 10.1007/s13744-022-01021-1.
ANDERSSON, E. et al. Associations between litter size and medical treatment of sows during farrowing and lactation. Acta Agriculturae Scandinavica, Animal Science, v. 69, n. 3, p. 176-182, 2020. doi: 10.1080/09064702.2020.1779800.
ANTHES, E.; MANDAVILLI, A. What to Know About the Bird Flu Outbreak in Dairy Cows. The New York Times, 2024. Disponível em: https://www.nytimes.com/article/bird-flu-cattle-human.html. Acesso em: abr. 2024.
ATTERBY, C. et al. Carriage of carbapenemase- and extended-spectrum cephalosporinase-producing Escherichia coli and Klebsiella pneumoniae in humans and livestock in rural Cambodia; gender and age differences and detection of blaOXA-48 in humans. Zoonoses and Public Health, v. 66, n. 6, p. 603-617, 2019. doi: 10.1111/zph.12612.
BAHADDAD, S. A. et al. Bacillus Species as Direct-Fed Microbial Antibiotic Alternatives for Monogastric Production. Probiotics & Antimicrobial Proteins, v. 15, p. 1-16, 2023. doi: 10.1007/s12602-022-09909-5.
BAJAGAI, Y. S. et al. Probiotics in Animal Nutrition—Production, Impact and Regulation. FAO Animal Production and Health Paper, n. 2016, FAO: Rome, Italy, 2016.
BARBUT, S.; LEISHMAN, E. M. Quality and Processability of Modern Poultry Meat. Animals, v. 12, n. 20, p. 2766, 2022. doi: 10.3390/ani12202766.
BARCELLOS, D. E. S. N. et al. Avanços em programas de biosseguridade para a suinocultura. Acta Scientiae Veterinariae, v. 36, n. 1, p. s33-s46, 2008. ISSN: 1678-0345.
BASSI, L. J. et al. Recomendações básicas para manejo de frangos de corte colonial. 2006. Disponível em: https://www.embrapa.br/suinos-e-aves/busca-de-publicacoes/-/publicacao/444241/recomendacoes-basicas-para-manejo-de-frango-de-corte-colonial
BEN Y. et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, v. 169, p. 483-493, 2019. doi: 10.3390/antibiotics9020049.
BENNANI, H. et al. Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. Antibiotics, v. 9, n. 2, p. 49, 2020. doi: 10.3390/antibiotics9020049.
BENNETT, C. E. et al. The broiler chicken as a signal of a human reconfigured biosphere. Royal Society Open Science, v. 5, n. 12, p. 180325, 2018. doi: 10.1098/rsos.180325.
BERNAERDT, E. et al. Determining the Characteristics of Farms That Raise Pigs without Antibiotics. Animals, v. 12, n. 10, p. 1224, 2022. doi: 10.3390/ani12101224.
BERNERS-LEE, M. et al. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene, v. 6, p. 56, 2018. doi: 10.1525/elementa.310.
BIAVATTI, M. W. et al. Preliminary studies of alternative feed additives for broilers: alternanthera brasiliana extract, propolis extract and linseed oil. Revista Brasileira de Ciência Avícola, v. 5, p. 147-151, 2003. doi: 10.1590/S1516-635X2003000200009.
BIKKER, P.; JANSMAN, A. J. M. Review: composition and rendition of feed by monogastric animals in the context of circular food production systems. Animal, v. 17, p. 100892, 2023. doi: 10.1016/j.animal.2023.100892.
BILAL, R. M. et al. Thermal stress and high stocking densities in poultry farms: potential effects and mitigation strategies. Journal of Thermal Biology, v. 99, p. 102944, 2021. doi: 10.1016/j.jtherbio.2021.102944.
BRASIL. Câmara Legislativa Federal. Projeto de Lei n° 173 de 2023. Estabelece a forma de transporte de animais vivos e dá outras providências. Disponível em: https://www.camara.leg.br/proposicoesWeb/fichadetramitacao?idProposicao=234690
BRASIL. MAPA. Instrução Normativa 113. Estabelecer as boas práticas de manejo e bem-estar animal nas granjas de suínos de criação comercial. 2020. Disponível em: https://www.gov.br/pt-br/noticias/agricultura-e-pecuaria/2020/12/norma-estabelece-as-boas-praticas-de-manejo-na-producao-comercial-de-suinos
BRASIL. MAPA. Instrução Normativa de N° 32 de 13 de maio de 2002. Aprovar as Normas Técnicas de Vigilância para doença de Newcastle e Influenza Aviária, e de controle e erradicação para a doença de Newcastle. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/sanidade-animal-e-vegetal/saude-animal/programas-de-saude-animal/pnsa/imagens/IN32.pdf
BRASIL. MAPA. Instrução Normativa de N° 8. Aprovar as Normas para o Controle e a Erradicação da Doença de Aujeszky (DA) em suídeos domésticos, a serem observadas em todo o território nacional. 2007. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/sanidade-animal-e-vegetal/saude-animal/programas-de-saude-animal/sanidade-suidea/arquivos-suideos/2007in8de03deabrilde2007-da.pdf
BRASIL. MAPA. Lista de produtos destinados à alimentação animal registrados e cadastrados no MAPA. 2023. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/registro-cadastro. Acesso em: nov. 2023.
BORLAUG, N. E. The green revolution revisited and the road ahead. Stockholm: Nobelprize.org, 2002.
BRITISH POULTRY COUNCIL. Antibiotic Stewardship Report 2023. Conselho Britânico de Avicultura. 2023. Disponível em: https://britishpoultry.org.uk/the-key-to-unlocking-continuous-improvement-bpc-antibiotic-stewardship-report-2023/
BUČKOVÁ, K. et al. Consequences of timing of organic enrichment provision on pig performance, health and stress resilience after weaning and regrouping. Animals, v. 16, n. 10, p. 100637, 2022. doi: 10.1016/j.animal.2022.100637.
CDC - CENTERS FOR DISEASE CONTROL AND PREVENTION. Antibiotic Resistance Threats in the United States. Atlanta, GA: U.S. Department of Health and Human Services, CDC, 2019. doi: 10.15620/cdc:82532.
CERETTA, G. S.; MATTE, A.; VILLWOCK, A. P. S. Production Circuits and the Participation of Family Farming in Brazilian Swine Farming. Revista de Geociências do Nordeste, v. 11, n. 1, p. 169-179, 2025. doi: 10.21680/2447-3359.2025v11n1p35337.
CHAIBAN, C. et al. Poultry farm distribution models developed along a gradient of intensification. Preventive Veterinary Medicine, v. 186, p. 105206, 2021. doi: 10.1016/j.prevetmed.2020.105206.
CHERMUKHA, I. et al. Pork Fat and Meat: a balance between consumer expectations and nutrient composition of four pig breeds. Foods, v. 12, n. 4, p. 690, 2023. doi: 10.3390/foods12040690.
CODEX ALIMENTARIUS. Maximum Residue Limits, 2021. Disponível em: https://www.fao.org/fao-who-codexalimentarius/codex-texts/maximum-residue-limits/en/.
DAVIS, C. G. et al. Assessing the Growth of U.S. Broiler and Poultry Meat Exports. Economic Research Service, United States Department of Agriculture, nov. 2013. Disponível em: https://www.clientadvisoryservices.com/Downloads/Assessing_Poultry_Nov_2013.pdf
D'EATH, R. B. et al. Why are most EU pigs tail docked? Economic and ethical analysis of four pig housing and management scenarios in the light of EU legislation and animal welfare outcomes. Animal, v. 10, n. 4, p. 687-699, 2016. doi: 10.1017/S1751731115002098.
DÍAZ, M. A. et al. [A nalidixic acid-resistant Salmonella enteritidis outbreak in Popayán, Cauca, 2011]. Biomedica, v. 33, n. 1, p. 62-69, 2013. doi: 10.1590/S0120-41572013000100008.
DITTOE, D. K. et al. Windowing poultry litter after a broiler house has been sprinkled with water. Journal of Applied Poultry Research, v. 27, n. 1, p. 1-15, 2018. doi: 10.3382/japr/pfx034.
DONG, D. D. et al. Reestruturação para uma cadeia de valor agroalimentar modernizada através da integração vertical e da agricultura contratual: a indústria suína-suína no Vietnã. Jornal de Agronegócio em Economias em Desenvolvimento e Emergentes, v. 10, n. 5, 2020. doi: 10.1108/JADEE-07-2019-0097.
DORNELAS, K. C. et al. Chicken bed reuse. Environmental Science and Pollution Research, v. 30, n. 14, p. 39537-39545, 2023. doi: 10.1007/s11356-023-25850-8.
DUCROT, C. et al. Issues and special features of animal health research. Veterinary Research, v. 42, n. 96, 2011. doi: 10.1186/1297-9716-42-96.
DUTRA, M. C. et al. Antimicrobial use in Brazilian swine herds: assessment of use and reduction examples. Microorganisms, v. 9, n. 4, p. 881, 2021. doi: 10.3390/microorganisms9040881.
EIJK, J. et al. Fast- and slower-growing broilers respond similarly to a reduction in stocking density with regard to gait, hock burn, skin lesions, cleanliness, and performance. Poultry Science, v. 102, n. 5, p. 102603, 2023. doi: 10.1016/j.psj.2023.102603.
EL-DEEK, A. A. et al. Alternative feed ingredients in the finisher diets for sustainable broiler production. Scientific Reports, v. 10, p. 17743, 2020. doi: 10.1038/s41598-020-74950-9.
EMBRAPA. Caracterização da avicultura no Brasil a partir do Censo Agropecuário 2017 do IBGE. 2023. Disponível em: https://www.embrapa.br/busca-de-noticias/-/noticia/86062004/embrapa-disponibiliza-dados-para-caracterizacao-da-avicultura-e-da-suinocultura-no-brasil-a-partir-de-censo-do-ibge. Acesso em: set. 2023.
EMBRAPA. Caracterização da suinocultura no Brasil a partir do Censo Agropecuário 2017 do IBGE. 2023. Disponível em: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1153994/caracterizacao-da-suinocultura-no-brasil-a-partir-do-censo-agropecuario-2017-do-ibge. Acesso em: set. 2023.
EMBRAPA. Central de Inteligência de Aves e Suínos – CIAS. Estatísticas. Publicado: 18/05/2023. Brasília: Embrapa Suínos e Aves, 2023a. Disponível em: https://www.embrapa.br/suinos-e-aves/cias
EMBRAPA. Central de Inteligência de Aves e Suínos – CIAS. Mapas e infográficos. Publicado: 18/05/2023. Brasília: Embrapa Suínos e Aves, 2023b. Disponível em: https://www.embrapa.br/suinos-e-aves/cias/mapas
ETC GROUP et al. Food Barons 2022: Crisis profiteering, digitalization and shifting power. Springfield: ETC Group, 2022. Disponível em: https://etcgroup.org/content/food-barons-2022. Acesso em: 7 dez. 2022.
EUROPEAN PARLIAMENT. Regulation (EU) 2019/4 of the European Parliament and of the Council of 11 December 2018 on the manufacture, placing on the market and use of medicated feed, amending Regulation (EC) No 183/2005 of the European Parliament and of the Council and repealing Council Directive 90/167/EEC (Text with EEA relevance). Estrasburgo, França: 11 dez. 2018. Disponível em: https://eur-lex.europa.eu/eli/reg/2019/4/oj
FAO - FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS; WOAH - WORLD ORGANIZATION FOR ANIMAL HEALTH; UNEP - UN ENVIRONMENT PROGRAMME; WHO - WORLD HEALTH ORGANIZATION. One Health High-Level Expert Panel: annual report. 2021. Disponível em: https://www.who.int/publications/m/item/one-health-high-level-expert-panel-annual-report-2021
FARKALOVÁ, M.; ORSZÁGHOVÁ, D. Development of consumption and prices of selected types of meat on the Slovak market in the decade 2012 – 2021. Journal of Central European Agriculture, v. 24, n. 2, p. 570-578, 2023. doi: 10.5513/jcea01/24.2.3746.
FAVERO, J. A. Evolução da genética: do "porco tipo banha" ao suíno light. Brasília: Embrapa Suínos e Aves, 2011. Disponível em: https://professor.pucgoias.edu.br/SiteDocente/admin/arquivosUpload/4753/material/Ra%C3%A7as%20Suinas.pdf.
FERRONATO, G.; PRANDINI, A. Dietary supplementation of inorganic, organic, and fatty acids in pig: A review. Animals, v. 10, n. 10, p. 1740, 2020.
FOOD AND AGRICULTURE DATA – FAOSTAT. Production. Crops and livestock products. FAO, 2022.
FU, Y.; HU, J.; ZHANG, H.; ERASMUS, M. A.; JOHNSON, T. A.; CHENG, H. W. The Impact of Early-Life Cecal Microbiota Transplantation on Social Stress and Injurious Behaviors in Egg-Laying Chickens. Microorganisms, v. 12, n. 3, p. 1-26, 2024. doi: https://doi.org/10.3390/microorganisms12030471.
GAILLARD, C.; BROSSARD, L.; DOURMAD, J.-Y. Improvement of feed and nutrient efficiency in pig production through precision feeding. Animal Feed Science and Technology, v. 268, p. 114611, out. 2020. doi: http://dx.doi.org/10.1016/j.anifeedsci.2020.114611.
GAUDARÉ, U.; PELLERIN, S.; BENOIT, M.; DURAND, G.; DUMONT, B.; BARBIERI, P.; NESME, T. Comparing productivity and feed-use efficiency between organic and conventional livestock animals. Environmental Research Letters, v. 16, n. 2, p. 024012, 21 jan. 2021. doi: http://dx.doi.org/10.1088/1748-9326/abd65e.
GODFRAY, H. et al. Meat consumption, health, and the environment. Science, v. 361, n. 6399, p. 1-8, 20 jul. 2018. doi: http://dx.doi.org/10.1126/science.aam5324.
GOVONI, C. et al. Global assessment of land and water resource demand for pork supply. Environmental Research Letters, v. 17, n. 7, p. 074003, 2022.
GRANDIN, T. A Practical Approach to Providing Environmental Enrichment to Pigs and Broiler Chickens Housed in Intensive Systems. Animals, v. 13, n. 14, p. 2372, 2023. doi: http://dx.doi.org/10.3390/an13142372.
GRŽINIĆ, G. et al. Intensive poultry farming: a review of the impact on the environment and human health. Science of the Total Environment, v. 858, p. 160014, fev. 2023. doi: http://dx.doi.org/10.1016/j.scitotenv.2022.160014.
GUNNARSSON, S. The conceptualisation of health and disease in veterinary medicine. Acta Veterinaria Scandinavica, v. 47, n. 20, 2006. doi: https://doi.org/10.1186/1751-0147-48-20.
GUO, X.; ZHANG, H.; WANG, H. et al. Identification of Key Modules and Hub Genes Involved in Regulating the Color of Chicken Breast Meat Using WGCNA. Animals, v. 13, n. 14, p. 2356, 2023. doi: http://dx.doi.org/10.3390/an13142356.
HALLENBERG, G. S.; JIWAKANON, J.; ANGKITITRAKUL, S. et al. Antibiotic use in pig farms at different levels of intensification-Farmers' practices in northeastern Thailand. Plos One, v. 15, n. 12, p. e0243099, 2020. doi: http://dx.doi.org/10.1371/journal.pone.0243099.
HAMSCHER, G.; SCZESNY, S.; HÖPER, H.; NAU, H. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, v. 74, n. 7, p. 1509-1518, 2002. doi: 10.1021/ac015588m.
HASHEMIPOUR, H. et al. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poultry Science, v. 92, p. 2059-2069, 2013. doi: 10.3382/ps.2012-02685.
HEINKE, J. et al. Water Use in Global Livestock Production—Opportunities and Constraints for Increasing Water Productivity. Water Resources Research, v. 56, n. 12, dez. 2020. doi: http://dx.doi.org/10.1029/2019WR026995.
HENRY, M.; JANSEN, H.; AMEZCUA, M. R.; O'SULLIVAN, T. L.; NIEL, L.; SHOVELLER, A. K.; FRIENDSHIP, R. M. Tail-Biting in Pigs: a scoping review. Animals, v. 11, n. 7, p. 2002, 2021. doi: http://dx.doi.org/10.3390/ani11072002.
HERRERO, M. et al. Livestock and sustainable food systems: status, trends, and priority actions. In: BRAUN, J. von. et al. Science and Innovations for Food Systems Transformation. United Nations Food Systems Summit, Springer, jul. 2023. p. 375-400. Disponível em: https://doi.org/10.1007/978-3-031-15703-5.
HERRERO, M.; HUGAS, M.; LELE, U.; WIRAKARTAKUSUMAH, A.; TORERO, M. A Shift to Healthy and Sustainable Consumption Patterns. In: VON BRAUN, J.; AFSANA, K.; FRESCO, L. O.; HASSAN, M. H. A. (Ed.). Science and Innovations for Food Systems Transformation. Cúpula de Sistemas Alimentares das Nações Unidas. Springer, 2023. p. 59-86. doi: https://doi.org/10.1007/978-3-031-15703-5.
HERSKIN, M. S.; JENSEN, H. E.; JESPERSEN, A.; FORKMAN, B.; JENSEN, M. B.; CANIBE, N.; PEDERSEN, L. J. Impact of the amount of straw provided to pigs kept in intensive production conditions on the occurrence and severity of gastric ulceration at slaughter. Research in Veterinary Science, v. 104, p. 200-206, 2016. doi: http://dx.doi.org/10.1016/j.rvsc.2015.12.017.
HONG, S. S.; JEONG, J.; LEE, J.; KIM, S.; MIN, W.; MYUNG, H. Therapeutic effects of bacteriophages against Salmonella gallinarum infection in chickens. Journal of Microbiology and Biotechnology, v. 23, n. 10, p. 1478-1483, 2013. doi: https://orcid.org/0009-0000-3616-1138.
HUONG, L. Q.; ANH, N. T. L.; NGOC, P. T.; GIANG, V. N.; PADUNGTOG, P. Antimicrobial use in household, semi-industrialized, and industrialized pig and poultry farms in Viet Nam. Preventive Veterinary Medicine, v. 189, p. 105292, 2021. doi: http://dx.doi.org/10.1016/j.prevetmed.2021.105292.
IANNETTI, L.; ROMAGNOLI, S.; COTTURONE, G.; VULPIANI, M. P. Animal Welfare Assessment in Antibiotic-Free and Conventional Broiler Chicken. Animals, v. 11, n. 10, p. 2822, 2021. doi: https://doi.org/10.3390/ani11102822.
JAMES, C.; DIXON, R.; TALBOT, L.; JAMES, S. J.; WILLIAMS, N.; ONARINDE, B. A. Assessing the Impact of Heat Treatment of Food on Antimicrobial Resistance Genes and Their Potential Uptake by Other Bacteria - A Critical Review. Antibiotics, v. 10, n. 12, p. 1440, 2021. doi: 10.3390/antibiotics10121440.
JI, K.; KHO, Y.; PARK, C.; PAEK, D.; RYU, P.; PAEK, D.; CHOI, K. Influence of water and food consumption on inadvertent antibiotics intake among general population. Environmental Research, v. 110, n. 7, p. 641-649, 2010. doi: 10.1016/j.envres.2010.06.008.
KARESH, W. B.; DOBSON, A.; LLOYD-SMITH, J. O.; LUBROTH, J. et al. Ecology of zoonoses: natural and unnatural histories. The Lancet, v. 380, n. 9857, p. 1936-1945, 2012. doi: 10.1016/S0140-6736(12)61678-X.
KOPLER, I. et al. Farmers’ Perspectives of the Benefits and Risks in Precision Livestock Farming in the EU Pig and Poultry Sectors. Animals, v. 13, n. 18, p. 2868, 9 set. 2023. doi: http://dx.doi.org/10.3390/ani13182868.
KOZLOV, M. Will bird flu spark a human pandemic? Scientists say the risk is rising. Nature, v. 638, n. 8049, p. 16-17, 2025. doi: https://doi.org/10.1038/d41586-025-00245-6.
LAATSCH, Dr. The Chicken of Tomorrow. 2024. Disponível em: https://livestock.extension.wisc.edu/articles/the-chicken-of-tomorrow/.
LAZARUS, B.; PATERSON, D. L.; MOLLINGER, J. L.; ROGERS, B. A. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clinical Infectious Diseases, v. 60, n. 3, p. 439-452, 2015. doi: 10.1093/cid/ciu785.
LAZUL, C. How to Improve Meat Quality and Welfare in Entire Male Pigs by Genetics. Animals, v. 11, n. 30, p. 699, 2021. doi: http://dx.doi.org/10.3390/ani111030699.
LI, Y.; WANG, L. Effects of previous housing system on agonistic behaviors of growing pigs at mixing. Applied Animal Behaviour Science, v. 132, n. 1-2, p. 20-26, 2011. doi: http://dx.doi.org/10.1016/j.applanim.2011.03.009.
LIAO, S. F.; NYACHOTI, M. Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, v. 3, p. 331-343, 2017. doi: 10.1016/j.animu.2017.06.007.
LYNEGAARD, J. C.; LARSEN, I.; HANSEN, C. F.; NIELSEN, J. P.; AMDI, C. Performance and risk factors associated with first antibiotic treatment in two herds, raising pigs without antibiotics. Porcine Health Management, v. 7, n. 1, p. 18, 2021. doi: http://dx.doi.org/10.1186/s40813-021-00198-y.
MA, F.; XU, S.; TANG, Z.; LI, Z.; ZHANG, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health, v. 3, n. 1, p. 32-38, 2021. doi: https://doi.org/10.1016/j.bsheal.2020.09.004.
MARKAZI, A. D. et al. Effect of acidifier product supplementation in laying hens challenged with Salmonella. Journal of Applied Poultry Research, v. 28, p. 919-929, 2019. doi: https://doi.org/10.3382/japr/pfz053.
MARTINELLI, G.; VOGEL, E.; DECLAN, M. et al. Assessing the eco-efficiency of different poultry production systems: an approach using life cycle assessment and economic value added. Sustainable Production and Consumption, v. 24, p. 181-193, 2020. doi: https://doi.org/10.1016/j.spc.2020.07.007.
MATTE, A. et al. Mudanças alimentares no consumo de proteína animal durante a pandemia de Covid-19 na Região Sul Brasil. Redes, v. 29, n. 1, 2024. doi: https://doi.org/10.17058/redes.v29i1.17909.
MARTINS, A. et al. Antibiotic candidates for Gram-positive bacterial infections induce multidrug resistance. Science Translational Medicine, v. 17, n. 780, p. eadl2103, 2025. doi: https://doi.org/10.1126/scitranslmed.adl2103.
MAURO, P. A.; LEMME, C. F.; RIBAS, J. C. R. Comparação financeira de granjas de suinocultura com sistemas de gaiolas de gestação e de gestação coletiva. World Animal Protection, 2016. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/producao-animal/arquivos-publicacoes-bem-estar-animal/folder-comparacao-financeira-entre-gaiolas-de-gestacao-e-gestacao-coletiva.pdf.
MELOTTI, L.; OOSTINGER, M.; BOLHUIS, J. E.; HELD, S.; MENDL, M. Coping personality type and environmental enrichment affect aggression at weaning in pigs. Applied Animal Behaviour Science, v. 133, n. 3-4, p. 144-153, 2011. doi: http://dx.doi.org/10.1016/j.applanim.2011.05.018.
MOCZ, F.; MICHEL, V.; JANVROT, M.; MOYSAN, J. P.; KEITA, A.; RIBER, A. B.; GUINEBRETIÈRE, M. Positive Effects of Elevated Platforms and Straw Bales on the Welfare of Fast-Growing Broiler Chickens Reared at Two Different Stocking Densities. Animals, v. 12, n. 5, p. 542, 2022. doi: http://dx.doi.org/10.3390/ani12050542.
MOLTENI, M. Covid-19 Makes the Case for More Meatpacking Robots. 2020. Disponível em: https://www.wired.com/story/covid-19-makes-the-case-for-more-meatpacking-robots/.
MONBIOT, G. Regenesis: feeding the world without devouring the planet. New York: Penguin Books, 2022.
MORAES, V. E.; CAPANEMA, L. A genética de frangos e suínos: a importância estratégica de seu desenvolvimento para o Brasil. BNDES. Rio de Janeiro: Banco Nacional de Desenvolvimento Econômico e Social, 2012. Disponível em: https://web.bndes.gov.br/bib/jspui/handle/1408/1492.
MORÉS, N.; AMARAL, A. L.; KICH, J. D. Controle de salmonela nas granjas de suínos. In: KICH, J. D.; SOUZA, J. C. P. V. B. (Ed.). Salmonela na suinocultura brasileira: do problema ao controle. Embrapa, 2015. p. 85-114. ISBN: 978-85-7035-494-5.
MORÉS, N.; GAVA, D. Vazio sanitário e desinfecção na suinocultura: o que se faz no Brasil e quais os ganhos reais com o cumprimento de boas práticas nessas áreas. In: Anais do X SINSUI - Simpósio Internacional de Suinocultura. Porto Alegre, Rio Grande do Sul, Brasil, maio 2017. ISBN: 978-85-66094-22-0. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/164868/1/final8639.pdf.
MOTTET, A.; DE HAAN, C.; FALCUCCI, A.; TEMPIO, G.; OPIO, C.; GERBER, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, v. 14, p. 1–8, 2017. https://doi.org/10.1016/j.gfs.2017.01.001.
MURRAY, A. K. The novel coronavirus COVID-19 outbreak: global implications for antimicrobial resistance. Frontiers in Microbiology, v. 11, p. 1020, 2020. doi: 10.3389/fmicb.2020.01020.
NAGHAVI, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet, v. 404, n. 10459, p. 1199-1226, 2024.
NAVARRO, M.; STANLEY, R.; CUSACK, A.; SULTANBAWA, Y. Combinations of plant-derived compounds against Campylobacter in vitro. Journal of Applied Poultry Research, v. 24, p. 352–363, 2015.
NEETESON, A. M. et al. Evolutions in commercial meat poultry breeding. Animals, v. 13, n. 19, p. 3150, 2023. Disponível em: https://doi.org/10.3390/ani13193150.
NUNAN, C. Ending routine farm antibiotic use in Europe through improving animal health and welfare. European Public Health Alliance, 2022. Disponível em: https://epha.org/ending-routine-farm-antibiotic-use/.
NUSSBAUM, M. C. Justice for animals: Our collective responsibility. Simon and Schuster, 2024. ISBN: 9781982102517.
OLIVEIRA, B. C. D. et al. Antimicrobial Use in Pig Farms in the Midwestern Region of Minas Gerais, Brazil. Antibiotics, v. 13, n. 5, p. 403, 2024. https://doi.org/10.3390/antibiotics13050403.
OLMOS, G.; BRAN, J. A.; VON KEYSERLINGK, M. A. G.; HÖLZEL, M. J. Lameness on Brazilian pasture based dairies - part 2: conversations with farmers and dairy consultants. Preventive Veterinary Medicine, v. 157, p. 115-124, 2018. https://doi.org/10.1016/j.prevetmed.2018.06.009.
O’NEILL, J. Tackling drug-resistant infections globally: final report and recommendations. 2016. Disponível em: https://www.cabidigitallibrary.org/doi/full/10.5555/20173071720.
ORTIN-BUSTILLO, A. et al. Evaluation of the Effect of Sampling Time on Biomarkers of Stress, Immune System, Redox Status and Other Biochemistry Analytes in Saliva of Finishing Pigs. Animals, v. 12, n. 16, p. 2127, 2022. doi: http://dx.doi.org/10.3390/ani12162127.
PANDEY, A. K.; KUMAR, P.; SAXENA, M. J. Aditivos Alimentares em Saúde Animal. In: GUPTA, R.; SRIVASTAVA, A.; LALL, R. (eds). Nutracêuticos em Medicina Veterinária. Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-04624-8_23.
PEDEN, R. S. E. et al. The translation of animal welfare research into practice: The case of mixing aggression between pigs. Applied Animal Behaviour Science, v. 204, p. 1-9, 2018. doi: https://doi.org/10.1016/j.applanim.2018.03.003.
PLUSKE, J. R.; TURPIN, D. L.; KIM, J. C. Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, v. 4, n. 2, p. 187-196, 2018. doi: http://dx.doi.org/10.1016/j.aninu.2017.12.004.
PROOROCU, M. et al. Pork meat consumption, from statistics to consumer behavior: a review. Porcine Research, v. 21, n. 1, 2021.
QUEIROZ, S. A.; CROMBER, V. U. Aggressive behavior in the genus Gallus sp. Brazilian Journal of Poultry Science, v. 8, n. 1, p. 1-14, 2006. doi: http://dx.doi.org/10.1590/s1516-635x2006000100001.
QUEENEL, H.; FARMER, C.; DEVILLER, N. Colostrum intake: influence on piglet performance and factors of variation. Livestock Science, v. 146, n. 2-3, p. 105-114, 2012. doi: http://dx.doi.org/10.1016/j.livsci.2012.03.010.
RAHMAN, M. et al. Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics, v. 11, n. 6, p. 766, 2022.
RANA, M. S. et al. Reducing Veterinary Drug Residues in Animal Products: A Review. Food Science of Animal Resources, v. 39, n. 5, p. 687-703, 2019. doi: 10.5851/kosfa.2019.e65.
RANGANATHAN, J. et al. Shifting Diets for a Sustainable Food Future. In: Global Food Policy Report. Washington, D.C.: International Food Policy Research Institute, 2016. p. 66-79. doi: https://doi.org/10.2499/9780896295827_08.
RICHARDS, P. J. et al. Phage biocontrol of Campylobacter jejuni in chickens does not produce collateral effects on the gut microbiota. Frontiers in Microbiology, v. 10, p. 476, 2019. doi: 10.3389/fmicb.2019.00476.
ROITER, L. M. et al. Analysis of the market potential of poultry meat and its forecast. IOP Conference Series: Earth and Environmental Science, v. 937, n. 2, p. 022104, 2021. doi: http://dx.doi.org/10.1088/1755-1315/937/2/022104.
ROOFCHAEI, A. et al. Influence of dietary carbohydrates, individually or in combination with phytase or an acidifier, on performance, gut morphology and microbial population in broiler chickens fed a wheat-based diet. Animal Nutrition, v. 5, p. 63-67, 2019.
SCHLOSSER, E. Prefacio. In: FREDERICK, A. Barons: Money, power and the corruption of America's food industry. 1. ed. Washington, DC: Island Press, 2024. ISBN: 9781642832693.
SCOTT, K. P. et al. Developments in understanding and applying prebiotics in research and practice—An ISAPP conference paper. Journal of Applied Microbiology, v. 128, p. 934-949, 2020. doi: 10.1111/jam.14548.
SIGSBEE, D. Animal Dignity: Philosophical Reflections on Non-Human Existence. Edited by Melanie Challenger. London; New York, Dublin: Bloomsbury Publishing, 2023. 275 p. ISBN: 978-1-3503-3166-2.
SILVA, I. J. O. et al. Manual de boas práticas para o bem-estar de galinhas poedeiras criadas livres de gaiola. Concordia: Embrapa Suínos e Aves, 2020. Disponível em: https://infoteca.cnptia.embrapa.br/infoteca/handle/doc/1127416.
SILVA, R. A. et al. Regulations on the use of antibiotics in livestock production in South America: a comparative literature analysis. Antibiotics, v. 12, n. 8, p. 1303, 2023. doi: 10.3390/antibiotics12081303.
SINCLAIR, M. et al. Attitudes of Pig and Poultry Industry Stakeholders in Guangdong Province, China, to Animal Welfare and Farming Systems. Animals, v. 9, n. 11, p. 860, 2019. doi: http://dx.doi.org/10.3390/ani9110860.
SINGER, P. Animal liberation now. Bodley Head: Reino Unido, 2023. ISBN: 1847927769.
ŚLIZ˙EWSKA, K. et al. The effect of symbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Scientific Reports, v. 10, p. 4281, 2020. doi: 10.1038/s41598-020-61256-z.
TAVARES, F. D.; DA SILVA, C. S. Diferenças na composição da carcaça de suínos machos, castrado e imunocastrado: Uma revisão narrativa da literatura. Scientia Generalis, v. 5, n. 2, p. 73-81, 2024.
TISEO, K. et al. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics, v. 9, n. 12, p. 918, 2020. doi: https://doi.org/10.3390/antibiotics9120918.
TONG, B. et al. O menor consumo de carne suína e as mudanças tecnológicas na produção de rações podem reduzir a pegada ambiental da cadeia de abastecimento de carne suína na China. Nature Food, v. 4, p. 74–83, 2023. https://doi.org/10.1038/s43016-022-00640-6.
TZORTZIS, G. et al. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. The Journal of Nutrition, v. 135, p. 1726-1731, 2005. doi: 10.1093/jn/135.7.1726.
UNEP - United Nations Environment Programme. Bracing for Superbugs. Strengthening environmental action in the One Health response to antimicrobial resistance. Geneva: United Nations Environment Programme, 2023. ISBN: 978-92-807-4006-6. Disponível em: https://www.unep.org/resources/superbugs/environmental-action.
VALENZUELA-GRIJALVA, N. V. et al. Dietary inclusion effects of phytochemicals as growth promoters in animal production. Journal of Animal Science and Technology, v. 59, p. 1-17, 2017. doi: 10.1186/s40781-017-0133-9.
VANGROENWEGHE, F. et al. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Management, v. 7, p. 1-12, 2021. doi: 10.1186/s40813-021-00191-5.
VERDON, M. et al. Effects of group housing on sow welfare: a review. Journal of Animal Science, v. 93, n. 5, p. 1999-2017, 2015. doi: http://dx.doi.org/10.2527/jas.2014-8742.
VERRAES, C. et al. Antimicrobial resistance in the food chain: a review. International Journal of Environmental Research and Public Health, v. 10, p. 2643-2669, 2013. doi:10.3390/ijerph10072643.
WALLACE, R. Breeding influenza: The political virology of offshore farming. Antipode, v. 41, n. 5, p. 916-951, 2009. doi: 10.1111/j.1467-8330.2009.00702.x.
WANG, H. et al. Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children. Environmental Science & Technology, v. 50, n. 5, p. 2692-2699, 2016. doi:10.1021/acs.est.5b05749.
WEARY, D. M.; JASPER, J.; HÖTZEL, M. J. Understanding weaning distress. Applied Animal Behaviour Science, v. 110, n. 1-2, p. 24-41, 2008. doi: http://dx.doi.org/10.1016/j.applanim.2007.03.025.
WEIMER, S. L. et al. Differences in carcass composition and meat quality of conventional and slow-growing broiler chickens raised at 2 stocking densities. Poultry Science, v. 101, n. 6, p. 101833, 2022. doi: http://dx.doi.org/10.1016/j.psj.2022.101833.
WHITTON, C. et al. Are We Approaching Peak Meat Consumption? Analysis of Meat Consumption from 2000 to 2019 in 35 Countries and Its Relationship to Gross Domestic Product. Animals, v. 11, n. 12, p. 3466, 2021. https://doi.org/10.3390/ani11123466.
WILBERT, C. A. et al. Sistema de produção de suínos em família sem o uso coletivo de antimicrobianos: regulamento. Embrapa Suínos e Aves, 2019. Disponível em: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1102053/sistema-de-producao-de-suinos-em-familia-sem-o-uso-coletivo-de-antimicrobianos-regulament.
WOAH - World Organization for Animal Health. Responsible and Prudent Use of Antimicrobial Agents in Veterinary Medicine. In: Report of the Meeting of the WOAH Terrestrial Animal Health Standards Commission, 2024. Disponível em: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/.
WOAH - World Organization of Animal Health. Animal Welfare. In: Terrestrial Animal Health Code, 2024. Disponível em: https://woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/.
WOOLHOUSE, M. et al. Antimicrobial resistance in humans, livestock and the wider environment. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 370, n. 1670, p. 20140083, 2015. doi: 10.1098/rstb.2014.0083.
WORLD ANIMAL PROTECTION. Gestação coletiva de matrizes suínas: boas práticas para o bem-estar na suinocultura. 2018. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/producao-animal/arquivos-publicacoes-bem-estar-animal/cartilha-wap-mapa-sobre-gestacao-coletiva-de-matrizes-suinas.pdf.
Downloads
Publicado
Edição
Seção
Licença
A submissão de originais para este periódico implica na transferência, pelos autores, dos direitos de publicação impressa e digital. Os direitos autorais para os artigos publicados são do autor, com direitos do periódico sobre a primeira publicação. Os autores somente poderão utilizar os mesmos resultados em outras publicações indicando claramente este periódico como o meio da publicação original. Em virtude de sermos um periódico de acesso aberto, permite-se o uso gratuito dos artigos em aplicações educacionais e científicas desde que citada a fonte conforme a licença CC-BY da Creative Commons.