Covid-19 develops late oxidative damage in those admitted to the Intensive Care Unit and presents low recovery rate when compared with individuals without the disease

Authors

DOI:

https://doi.org/10.17058/rips.v8i2.19291

Keywords:

SARS-CoV-2, Oxidative Stress, Intensive care therapy, Hospitalization

Abstract

Objective: compare the oxidative damage and antioxidant defense of individuals with and without Covid-19 admitted to the ICU and monitor the hospitalization process until presenting a clinical outcome of hospital discharge or death. Method: the study consisted of 95 individuals (42 in the ICU Covid and 53 in the adult ICU), which through blood samples and using classical methodologies it was possible to analyze the levels of total glutathione (GSH), Total Antioxidant Status (TAS), vitamin C and D, Lactate Dehydrogenase (LDH) oxidative damage in biomolecules (lipids, proteins and DNA).. In addition, mortality prediction was accompanied by Acute Physiology and Chronic Health disease Classification System II (APACHE II), Simplified Acute Physiology Score (SAPS II) and Sequential Organ Failure Assessment (SOFA) scores. Results: through the data obtained, there is a greater damage to protein in the last evaluation of the adult ICU and an increase in DNA damage in individuals hospitalized in the adult ICU in both the first and last evaluation. In addition, there was a reduction of vitamin D in the ICU Covid in the first evaluation and an increase in LDH in the last evaluation, and the individuals of the adult ICU showed a significant increase in SAT and GSH in both moments of evaluation. Conclusion: through the above, we believe that the greater severity at the time of admission and greater damage to the protein due to the hospitalization process of individuals admitted to the adult ICU may be related to sepsis and that the increase in the severity and mortality of cases of individuals admitted to the Covid ICU may suggest that this disease leads to late oxidative damage, with a low recovery rate.

Downloads

Download data is not yet available.

References

Vanhorebeek I, Latronico N, Berghe GVD. ICU-acquired weakness. Intensive Care Medicine. 2020; 46(4):637–653. doi: http://doi.org/10.1007/s00134-020-05944-4

Pileggi CA, Hedges CP, D’Souza RF, Durainayagam BR, Markworth JF, Hickey, et al. Exercise recovery increases skeletal muscle H2O2 emission and mitochondrial respiratory capacity following two-weeks of limb immobilization. Free Radic Biol Med. 2018; 124:241–248. doi: http://doi.org/10.1016/j.freeradbiomed.2018.06.012

Romero‐Cordero S, Noguera‐Julian A, Cardellach F, Fortuny C, Morén C. Mitochondrial changes associated with viral infectious diseases in the paediatric population. Review MedVirol 2021; 31(6):e2232. doi: http://doi.org/10.1002/rmv.2232.

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev 2017; 2017:1-13. doi: http://doi.org/10.1155/2017/8416763.

Akerboom TPM, Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods in enzymology 1981; 77:373-382. doi: http://doi.org/10.1016/s0076-6879(81)77050-2.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analyt Biochemist 1979; 95(2):351-358. doi: http://doi.org/10.1016/0003-2697(79)90738-3.

Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 2002; 32(9):790–796. doi: http://doi.org/10.1016/S0891-5849(02)00765-7.

Schmid W. The micronucleus test. Mutat Res 1975; 31(1):9-15. doi: http://doi.org/10.1016/0165-1161(75)90058-8.

Carr AC, Spencer E, Mackle D, Hunt A, Judd H, Mehrtens J, et al. The effect of conservative oxygen therapy on systemic biomarkers of oxidative stress in critically ill patients. Free Radic Biol Med 2020; 160:13–18. doi: http://doi.org/10.1016/j.freeradbiomed.2020.06.018.

Deo P, Fenech M, Dhillon VS. Association between glycation biomarkers, hyperglycemia, and micronucleus frequency: A meta-analysis. Mutat Res 2021; 787:108369. doi: http://doi.org/10.1016/j.mrrev.2021.108369.

Kirsch-Volders M, Fenech M. Inflammatory cytokine storms severity may be fueled by interactions of micronuclei and RNA viruses such as COVID-19 virus SARS-CoV-2. A hypothesis. Mutat Res 2021; 788:108395. doi: http://doi.org/10.1016/j.mrrev.2021.108395.

Las Heras N, Giménez VMM, Ferder L, Manucha W, Lahera V. Implications of Oxidative Stress and Potential Role of Mitochondrial Dysfunction in COVID-19: Therapeutic Effects of Vitamin D. Antioxidants 2020;9(9):897. doi: http://doi.org/10.3390/antiox9090897.

Muntean C, Săsăran M. Vitamin D Status and Its Role in First-Time and Recurrent Urinary Tract Infections in Children: A Case-Control Study. Children 2021;8(5):419. doi: http://doi.org/10.3390/children8050419.

Spencer E, Rosengrave P, Williman J, Shaw G, Carr AC. Circulating protein carbonyls are specifically elevated in critically ill patients with pneumonia relative to other sources of sepsis. Free Radic Biol Med 2022; 179:208–212. doi: http://doi.org/10.1016/j.freeradbiomed.2021.11.029.

Zhong, O., Hu, J., Wang, J., Tan, Y., Hu, L., & Lei, X. (2022). Antioxidant for treatment of diabetic complications: A meta‐analysis and systematic review. J Biochem Mol Toxicol 2022; 36(6):e23038. doi: http://doi.org/10.1002/jbt.23038.

Hertiš Petek T, Petek T, Močnik M, Marčun Varda N. Systemic Inflammation, Oxidative Stress and Cardiovascular Health in Children and Adolescents: A Systematic Review. Antioxidants 2022; 11(5):894. doi: http://doi.org/10.3390/antiox11050894.

Vasconcelos SML, Goulart MOF, Moura JBF, Manfredini V, Benfato MS, Kubota LT. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Química Nova. 2007; 30(5):1323–1338. doi: http://doi.org/10.1590/S0100-40422007000500046.

Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, et al. Chapter Five - Glutathione as a Marker for Human Disease. Adv Clin Chem 2018; 87:141–159. doi: http://doi.org/10.1016/bs.acc.2018.07.004.

Gu J, Wu Y, Huang W, Fan X, Chen X, Zhou B, et al. Effect of vitamin D on oxidative stress and serum inflammatory factors in the patients with type 2 diabetes. J Clin Lab Anal 2022; 36(5):e24430. doi: http://doi.org/10.1002/jcla.24430.

Poggiali E, Zaino D, Immovilli P, Rovero L, Losi G, Dacrema A, et al. Lactate dehydrogenase and C-reactive protein as predictors of respiratory failure in COVID-19 patients. Clin Chim Acta 2020; 509:135–138. doi: http://doi.org/10.1016/j.cca.2020.06.012.

Wang L, Yang LM, Pei SF, Chong YZ, Guo Y, Gao XL, et al. CRP, SAA, LDH, and DD predict poor prognosis of coronavirus disease (COVID-19): a meta-analysis from 7739 patients. Scand J Clin Lab Invest 2021; 81(8):679–686. doi: http://doi.org/10.1080/00365513.2021.2000635.

Zou X, Li S, Fang M, Hu M, Bian Y, Ling J, et al. Acute Physiology and Chronic Health Evaluation II Score as a Predictor of Hospital Mortality in Patients of Coronavirus Disease 2019. Critical Care Med 2020; 48(8):e657–e665. doi: http://doi.org/10.1097/CCM.0000000000004411.

Published

2025-07-03

Issue

Section

ARTIGO ORIGINAL

How to Cite

Minuzzi, P. de V. ., Schreiner, G. E. ., Santos, L. S. dos ., Schmitt, E. G. ., Maders, L. T. ., Carpes, M. F. ., Malheiros, R. T. ., & Manfredini, V. (2025). Covid-19 develops late oxidative damage in those admitted to the Intensive Care Unit and presents low recovery rate when compared with individuals without the disease . Revista Interdisciplinar De Promoção Da Saúde, 8(2), 93-105. https://doi.org/10.17058/rips.v8i2.19291