EVALUATION OF THE PERFORMANCE OF WAVELETS FOR MULTIVARIATE REGRESSION MODELS USING INFRARED SPECTROSCOPY DATA
DOI:
https://doi.org/10.17058/tecnolog.v12i1.126Keywords:
PLS, otimização, wavelets, redução da dimensionalidade, infravermelho, polióis de sojaAbstract
Discrete wavelet transform (DWT) Daubecheis was used to compress the dimension of spectral infrared data for determination to the hydroxyl value (OHV) of soybean polyols samples. Spectral data were recorded between 650 and 4000 cm-1 with a 4 cm-1 resolution by Fourier transform infrared spectroscopy (FTIR) coupled with attenuated total reflection (ATR) accessory. Through the models of regression using partial least squares (PLS) and interval partial least squares (iPLS) methods, the performance of each was compared with the original and/or between them. The spectra data set compressed the 1/4 of its original dimension they had presented the best one resulted with a lesser RMSEP that the model with the not compress signal and a similar correlation. With this result a model of lesser dimension was gotten however with the same capacity, thus DWT, getting a robust method for the reduction of the dimension of the spectra data sets, when if to intend to construct regression multivariate models.Downloads
Download data is not yet available.
Downloads
Published
2008-08-08
Issue
Section
Environmental Technology
License
A submissão de originais para este periódico implica na transferência, pelos autores, dos direitos de publicação impressa e digital. Os direitos autorais para os artigos publicados são do autor, com direitos do periódico sobre a primeira publicação. Os autores somente poderão utilizar os mesmos resultados em outras publicações indicando claramente este periódico como o meio da publicação original. Em virtude de sermos um periódico de acesso aberto, permite-se o uso gratuito dos artigos em aplicações educacionais e científicas desde que citada a fonte conforme a licença CC-BY da Creative Commons.
How to Cite
EVALUATION OF THE PERFORMANCE OF WAVELETS FOR MULTIVARIATE REGRESSION MODELS USING INFRARED SPECTROSCOPY DATA. (2008). Tecno-Lógica, 12(1), 7-13. https://doi.org/10.17058/tecnolog.v12i1.126